Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Regen Med ; 21(3): 487-497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294592

RESUMO

BACKGROUND: Currently, there is no apparent treatment for sarcopenia, which is characterized by diminished myoblast function. We aimed to manufacture exosomes that retain the myogenic differentiation capacity of human fetal cartilage-derived progenitor cells (hFCPCs) and investigate their muscle regenerative efficacy in myoblasts and a sarcopenia rat model. METHODS: The muscle regeneration potential of exosomes (F-Exo) secreted during myogenic differentiation of hFCPCs was compared to human bone marrow mesenchymal stem cells-derived (hBMSCs) exosomes (B-Exo) in myoblasts and sarcopenia rat model. The effect of F-Exo was analyzed through known microRNAs (miRNAs) analysis. The mechanism of action of F-Exo was confirmed by measuring the expression of proteins involved in the Wnt signaling pathway. RESULTS: F-Exo and B-Exo showed similar exosome characteristics. However, F-Exo induced the expression of muscle markers (MyoD, MyoG, and MyHC) and myotube formation in myoblasts more effectively than B-Exo. Moreover, F-Exo induced greater increases in muscle fiber cross-sectional area and muscle mass compared to B-Exo in a sarcopenia rat. The miR-145-5p, relevant to muscle regeneration, was found in high concentrations in the F-Exo, and RNase pretreatment reduced the efficacy of exosomes. The effects of F-Exo on the expression of myogenic markers in myoblasts were paralleled by the miR-145-5p mimics, while the inhibitor partially negated this effect. F-Exo was involved in the Wnt signaling pathway by enhancing the expression of Wnt5a and ß-catenin. CONCLUSION: F-Exo improved muscle regeneration by activating the Wnt signaling pathway via abundant miR-145-5p, mimicking the remarkable myogenic differentiation potential of hFCPCs.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Sarcopenia , Humanos , Ratos , Animais , Exossomos/metabolismo , Sarcopenia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/metabolismo , Cartilagem/metabolismo
2.
Knee Surg Sports Traumatol Arthrosc ; 32(2): 499-508, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240064

RESUMO

PURPOSE: The purpose of this study was to demonstrate the clinical utility of controlled posterior condylar milling (CPCM) in gap balancing while minimally resecting the tibia during fixed-bearing unicompartmental knee arthroplasty (UKA). METHODS: This study is a retrospective cohort study. Patients who underwent medial UKA for isolated medial compartment osteoarthritis with a minimum follow-up of 2 years were included. The patients were divided into two groups: the conventional group (n = 56) and the CPCM group (n = 66). In the CPCM group, the proximal tibia was resected at the level of the distal end of the subchondral bone. If the flexion gap was tighter than extension, the posterior condyle was additionally milled to adjust gap tightness. Standing knee X-ray and scanogram were used to evaluate alignment and tibia resection amount. Range of motion (ROM) and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) scores were used to evaluate clinical outcomes. RESULTS: The CPCM group showed significantly smaller tibia resection (3.6 ± 1.9 mm) compared to the conventional group (5.2 ± 2.7 mm) (p < 0.001). Postoperative ROM (133.0 ± 8.3°, 135.2 ± 7.2°, n.s.) and WOMAC (19.3 ± 13.6, 23.6 ± 17.7, n.s.) were not significantly different between the two groups. Postoperative periprosthetic fractures occurred in two patients in conventional group, while the CPCM group had no periprosthetic fractures. CONCLUSION: The CPCM technique may be a simple and useful intraoperative technique that can achieve minimal tibia resection and promising clinical outcomes while easily adjusting gap tightness between flexion and extension during medial fixed-bearing UKA. LEVEL OF EVIDENCE: Level III.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Humanos , Artroplastia do Joelho/métodos , Tíbia/cirurgia , Articulação do Joelho/cirurgia , Estudos Retrospectivos , Osteoartrite do Joelho/cirurgia , Amplitude de Movimento Articular
3.
Tissue Eng Regen Med ; 21(2): 341-351, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856071

RESUMO

BACKGROUND: Current tendon and ligament reconstruction surgeries rely on scar tissue healing which differs from native bone-to-tendon interface (BTI) tissue. We aimed to engineer Synovium-derived mesenchymal stem cells (Sy-MSCs) based scaffold-free fibrocartilage constructs and investigate in vivo bone-tendon interface (BTI) healing efficacy in a rat anterior cruciate ligament (ACL) reconstruction model. METHODS: Sy-MSCs were isolated from knee joint of rats. Scaffold-free sy-MSC constructs were fabricated and cultured in differentiation media including  TGF-ß-only, CTGF-only, and TGF-ß + CTGF. Collagenase treatment on tendon grafts was optimized to improve cell-to-graft integration. The effects of fibrocartilage differentiation and collagenase treatment on BTI integration was assessed by conducting histological staining, cell adhesion assay, and tensile testing. Finally, histological and biomechanical analyses were used to evaluate in vivo efficacy of fibrocartilage construct in a rat ACL reconstruction model. RESULTS: Fibrocartilage-like features were observed with in the scaffold-free sy-MSC constructs when applying TGF-ß and CTGF concurrently. Fifteen minutes collagenase treatment increased cellular attachment 1.9-fold compared to the Control group without affecting tensile strength. The failure stress was highest in the Col + D + group (22.494 ± 13.74 Kpa) compared to other groups at integration analysis in vitro. The ACL Recon + FC group exhibited a significant 88% increase in estimated stiffness (p = 0.0102) compared to the ACL Recon group at the 4-week postoperative period. CONCLUSION: Scaffold-free, fibrocartilage engineering together with tendon collagenase treatment enhanced fibrocartilaginous BTI healing in ACL reconstruction.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Células-Tronco Mesenquimais , Ratos , Animais , Tendões , Fibrocartilagem , Fator de Crescimento Transformador beta , Colagenases
4.
J Arthroplasty ; 39(3): 645-650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37757984

RESUMO

BACKGROUND: This study aimed to investigate the clinical outcomes of fixed-bearing medial unicompartmental knee arthroplasty (UKA) for tibia vara knees and the associated changes in joint space malalignment (JSM) and joint line obliquity (JLO). METHODS: We retrospectively analyzed a consecutive group of 100 patients who underwent fixed-bearing medial UKA with a preoperative medial proximal tibia angle (MPTA) ≥86° (n = 50) and MPTA <86° (n = 50) and who had a minimum 5-year follow-up. Radiological parameters, including the hip-knee-ankle angle, MPTA, and the postoperative JSM and JLO, were measured. Functional evaluation was performed using the range of motion, visual analog scale, Knee Society Knee Score, Knee Society Function Score, and Western Ontario and McMaster Universities Osteoarthritis Index score. RESULTS: The MPTA <86° group showed significantly higher postoperative JLO (91.8 versus 90.4°, respectively; P = .002) and JSM (6.1 versus 4.2°, respectively; P = .026) compared to the MPTA ≥86° group. Functional outcomes, including range of motion, visual analog scale, Knee Society Knee Score, Knee Society Function Score, and Western Ontario and McMaster Universities Osteoarthritis Index scores, were not significantly different between the 2 groups. CONCLUSIONS: Fixed-bearing medial UKA is a safe and effective surgical option for patients who have tibia vara knees, as an increase in JLO and JSM postoperatively does not have a clinically relevant impact, even after a minimum 5-year follow-up.


Assuntos
Artroplastia do Joelho , Doenças do Desenvolvimento Ósseo , Osteoartrite do Joelho , Osteocondrose/congênito , Humanos , Artroplastia do Joelho/métodos , Osteoartrite do Joelho/cirurgia , Seguimentos , Estudos Retrospectivos , Articulação do Joelho/cirurgia , Tíbia/cirurgia
5.
Adv Healthc Mater ; 12(27): e2301180, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463568

RESUMO

Degenerative meniscus tears (DMTs) are prevalent findings in osteoarthritic knees, yet current treatment is mostly limited to arthroscopic partial meniscectomy rather than regeneration, which further exacerbates arthritic changes. Translational research regarding meniscus regeneration is hindered by the complex, composite nature of the meniscus which exhibit a gradient from inner cartilage-like tissue to outer fibrous tissue, as well as engineering hurdles often requiring growth factors and cross-linking agents. Here, a meniscus zonal tissue gradient is proposed using zone-specific decellularized meniscus extracellular matrix (DMECM) and autologous synovial mesenchymal stem cells (SMSC) via self-aggregation without the use of growth factors or cross-linking agents. Combination with zone-specific DMECM during self-aggregation of MSCs forms zone-specific meniscus tissue that reflects the respective DMECM harvest site. The implantation of these constructs leads to the regeneration of meniscus tissue resembling the native meniscus, demonstrating inner cartilaginous and outer fibrous characteristics as well as recovery of native meniscal microarchitecture in a porcine partial meniscectomy model at 6 months. In all, the findings offer a potential regenerative therapy for DMTs that may improve current partial meniscectomy-based patient care.


Assuntos
Menisco , Células-Tronco Mesenquimais , Humanos , Animais , Suínos , Meniscectomia , Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual
6.
Biomater Adv ; 152: 213522, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343332

RESUMO

Current tendon/ligament reconstructions integrate via scar tissue rather than proper bone-tendon interface regeneration, which affects graft longevity, changes in bone tunnel size, and functional outcomes. The purpose of this study was to develop a functional demineralized bone matrix (DBM) + fibrocartilage extracellular matrix (FCECM) composite scaffold, characterize its physicochemical properties, and evaluate its efficacy in repairing tendon-bone interface in a rabbit tendon reconstruction model. Solubilized FCECM was loaded and crosslinked on to DBM scaffolds via gamma-irradiation to create DBM + FCECM scaffolds. The resulting scaffold showed interconnected pores coated with FCECM and protein cargo similar to FCECM. The addition of FCECM modified the physicochemical properties of the DBM scaffold, including microstructure, biochemical composition, mechanical strength, thermodynamic properties, and degradation period. The DBM + FCECM scaffold was biocompatible for mesenchymal stem cells (MSCs) and resulted in elevation of fibrochondrogenic gene markers compared to DBM scaffolds in vitro. In vivo implantation of DBM + FCECM scaffold resulted in neofibrocartilage formation, better pullout strength, and less bone tunnel widening compared to DBM only group in a rabbit tendon reconstruction model. In conclusion, the FCECM augmented DBM scaffold repairs the tendon-bone interface with osseous-fibrocartilage tissue, which may be utilized to improve current tendon reconstruction surgeries.


Assuntos
Matriz Óssea , Osso e Ossos , Animais , Coelhos , Osso e Ossos/cirurgia , Tendões/transplante , Matriz Extracelular/química , Fibrocartilagem
7.
Life Sci ; 324: 121741, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149084

RESUMO

AIMS: Osteoarthritis (OA) is caused by an imbalance in the synthesis and degradation of cartilage tissue by chondrocytes. Therefore, a therapeutic agent for OA patients that can positively affect both synthesis and degradation is needed. However, current nonsurgical treatments for OA can barely achieve satisfactory long-term outcomes in cartilage repair. Human fetal cartilage progenitor cells-secretome (ShFCPC) has shown potent anti-inflammatory and tissue-repair effects; however, its underlying mechanisms and effects on OA have rarely been systematically elucidated. This study aims to analyze and evaluate the potency of ShFCPC in modifying OA process. MAIN METHODS: Herein, secreted proteins enriched in ShFCPC have been characterized, and their biological functions both in vitro and in vivo in an OA model are compared with those of human bone marrow-derived mesenchymal stem cells-secretome (ShBMSC) and hyaluronan (HA). KEY FINDINGS: Secretome analysis has shown that ShFCPC is significantly enriched with extracellular matrix molecules involved in many effects of cellular processes required for homeostasis during OA progression. Biological validation in vitro has shown that ShFCPC protects chondrocyte apoptosis by suppressing the expression of inflammatory mediators and matrix-degrading proteases and promotes the secretion of pro-chondrogenic cytokines in lipopolysaccharide-induced coculture of human chondrocytes and SW982 synovial cells compared with ShBMSC. Moreover, in a rat OA model, ShFCPC protects articular cartilage by reducing inflammatory cell infiltration and M1/M2 macrophage ratio in the synovium, which directly contributes to an increase in immunomodulatory atmosphere and enhances cartilage repair compared to ShBMSC and HA. SIGNIFICANCE: Our findings support clinical translations of ShFCPC as a novel agent for modifying OA process.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Ratos , Animais , Secretoma , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Ácido Hialurônico/metabolismo
8.
Macromol Biosci ; 23(6): e2300029, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975740

RESUMO

The cartilage acellular matrix (CAM) derived from porcine cartilage, which does not induce significant inflammation and provides an environment conducive for cell growth and differentiation, is a promising biomaterial candidate for scaffold fabrication. However, the CAM has a short period in vivo, and the in vivo maintenance is not controlled. Therefore, this study is aimed at developing an injectable hydrogel scaffold using a CAM. The CAM is cross-linked with a biocompatible polyethylene glycol (PEG) cross-linker to replace typically used glutaraldehyde (GA) cross-linker. The cross-linking degree of cross-linked CAM by PEG cross-linker (Cx-CAM-PEG) according to the ratios of the CAM and PEG cross-linker is confirmed by contact angle and heat capacities measured by differential scanning calorimetry. The injectable Cx-CAM-PEG suspension exhibits controllable rheological properties and injectability. Additionally, injectable Cx-CAM-PEG suspensions with no free aldehyde group are formed in the in vivo hydrogel scaffold almost simultaneously with injection. In vivo maintenance of Cx-CAM-PEG is realized by the cross-linking ratio. The in vivo formed Cx-CAM-PEG hydrogel scaffold exhibits certain host-cell infiltration and negligible inflammation within and near the transplanted Cx-CAM-PEG hydrogel scaffold. These results suggest that injectable Cx-CAM-PEG suspensions, which are safe and biocompatible in vivo, represent potential candidates for (pre-)clinical scaffolds.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Animais , Suínos , Engenharia Tecidual/métodos , Suspensões , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Cartilagem , Polietilenoglicóis/química , Hidrogéis/farmacologia , Hidrogéis/química , Inflamação , Tecidos Suporte/química
9.
Mater Sci Eng C Mater Biol Appl ; 128: 112312, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474863

RESUMO

Meniscus is a fibrocartilage composite tissue with three different microstructual zones, inner fibrocartilage, middle transitional, and outer fibrous zone. We hypothesized that decellularized meniscus extracellular matrix (DMECM) would have different characteristics according to zone of origin. We aimed to compare zone-specific DMECM in terms of biochemical characteristics and cellular interactions associated with tissue engineering. Micronized DMECM was fabricated from porcine meniscus divided into three microstructural zones. Characterization of DMECM was done by biochemical and proteomic analysis. Inner DMECM showed the highest glycosaminoglycan content, while middle DMECM showed the highest collagen content among groups. Proteomic analysis showed significant differences among DMECM groups. Inner DMECM showed better adhesion and migration potential to meniscus cells compared to other groups. DMECM resulted in expression of zone-specific differentiation markers when co-cultured with synovial mesenchymal stem cells (SMSCs). SMSCs combined with inner DMECM showed the highest glycosaminoglycan in vivo. Outer DMECM constructs, on the other hand, showed more fibrous tissue features, while middle DMECM constructs showed both inner and outer zone characteristics. In conclusion, DMECM showed different characteristics according to microstructural zones, and such material may be useful for zone-specific tissue engineering of meniscus.


Assuntos
Menisco , Proteômica , Animais , Matriz Extracelular , Meniscos Tibiais , Suínos , Engenharia Tecidual
10.
J Tissue Eng Regen Med ; 15(11): 1023-1036, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34591344

RESUMO

Decellularized extra-cellular matrix (ECM) has been studied as an alternative to anti-adhesive biomaterials and cartilage acellular matrix (CAM) has been shown to inhibit postoperative adhesion in several organs. This study aimed to evaluate the suitability of glutaraldehyde (GA) crosslinked CAM-films as anti-adhesion barriers for peripheral nerve injury. The films were successfully fabricated and showed improved physical properties such as mechanical strength, swelling ratio, and lengthened degradation period while maintaining the microstructure and chemical composition after GA crosslinking. In the in vitro study of CAM-film, the dsDNA content met the recommended limit of decellularization and more than 70% of the major ECM components were preserved after decellularization. The adhesion and proliferation of seeded human umbilical vein endothelial cells and fibroblasts were significantly lower in CAM-film than in control, but similar with Seprafilm. However, the CAM-film extract did not show cytotoxicity. In the in vivo study, the peri-neural fibrosis was thicker, adhesion score higher, and peri-neural collagen fibers more abundant in the control group than in the CAM-film group. The total number of myelinated axons was significantly higher in the CAM-film group than in the control group. The inflammatory marker decreased with time in the CAM-film group compared to that in the control group, whereas the nerve regenerative marker expression was maintained. Moreover, the ankle angles at contracture and toe-off were higher in the CAM film-treated rats than in the control rats. GA-crosslinked CAM films may be used during peripheral nerve surgery to prevent peri-neural adhesion and enhance nerve functional recovery.


Assuntos
Cartilagem/química , Reagentes de Ligações Cruzadas/química , Matriz Extracelular/química , Glutaral/química , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Animais , Adesão Celular , Morte Celular , Proliferação de Células , Colágeno/metabolismo , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/imunologia , Nervo Isquiático/patologia , Suínos
11.
Arthroscopy ; 37(9): 2873-2882, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33798652

RESUMO

PURPOSE: To compare cell yield and character of synovium-derived mesenchymal stem cell (SDMSC) harvested by 2 different techniques using rongeur and motorized shaver during knee arthroscopy. METHODS: This study was performed in 15 patients undergoing partial meniscectomy. Two different techniques were used to harvest SDMSCs in each patient from the synovial membrane at 2 different locations overlying the anterior fat pad, each within 1 minute of harvest time. Cell yield and proliferation rates were evaluated. Cell surface marker analysis was done after passage 2 (P2). Trilineage differentiation potential was evaluated by real-time quantitative polymerase chain reaction and histology. Statistical analysis between the 2 methods was done using the Mann-Whitney U test. RESULTS: Wet weight of total harvested tissue was 69.93 (± 20.02) mg versus 378.91 (± 168.87) mg for the rongeur and shaver group, respectively (P < .0001). Mononucleated cell yield was 3.32 (± 0.89) versus 3.18 (± 0.97) × 103 cells/mg, respectively (P = .67). Fluorescence-activated cell sorting analysis revealed similar SDMSC-related cell surface marker expression levels in both groups, with positive expression for CD44, CD73, CD90, and CD105 and decreased expression for CD34 and CD45. Both groups showed similar trilineage differentiation potential in histology. Chondrogenic (SOX9, ACAN, COL2), adipogenic (LPL, PLIN1, PPAR-γ), and osteogenic (OCN, OSX, RUNX2) gene marker expression levels also were similar between both groups. CONCLUSIONS: No difference was observed between rongeur biopsy and motorized shaver harvest methods regarding SDMSC yield and cell characteristics. CLINICAL RELEVANCE: The current study shows that both rongeur and motorized shaver harvest are safe and effective methods for obtaining SDMSCs. Motorized shaver harvest results in higher volume of tissue acquisition per time, thereby leading to higher number of SDMSCs which may be useful during clinical application.


Assuntos
Células-Tronco Mesenquimais , Biópsia , Diferenciação Celular , Células Cultivadas , Condrogênese , Humanos , Membrana Sinovial
12.
Mater Sci Eng C Mater Biol Appl ; 117: 111283, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919644

RESUMO

To protect unwanted tissue adhesions occurring after surgeries, we aimed to fabricate an anti-adhesive film using cartilage acellular matrix (CAM) with anti-vascular inhibition activity. Additionally, to fabricate anti-adhesive films with tunable swelling, mechanical, and biodegradation properties, a biodegradable polyester (PEP) with N-hydroxysuccinimide (NHS) in the chain end position was synthesized as a cross-linker. CAM/PEP (CP) films were prepared with various CAM: PEP ratios in the wide size with repeatable reproducibility, and then, cross-linked CP (Cx-CP) were obtained by the interpenetrating cross-linking reaction between the amine group on CAM and the NHS group on PEP cross-linkers under thermal treatment. The biodegradation, wettability, swelling, and mechanical properties of the prepared anti-adhesive Cx-CP films were controlled by varying the CAM:PEP ratio. The degradation half-life, contact angle, elastic moduli and toughness of Cx-CP films increased according to the increasing PEP content. Additionally, Cx-CP films significantly inhibits the attachment and proliferation of HUVECs. Cx-CP film prepared by varying the CAM:PEP ratio can be tailored to meet individual requirements for in vivo injured tissues. In animal experiments, anti-adhesive Cx-CP films implanted between the peritoneal wall and the cecum significantly suppressed tissue adhesion between them. Additionally, good adhesion effect observed at anti-adhesive film maintained for proper time period at injured tissues. Taken together, in this work, we successfully achieved strategy for the development of anti-adhesive barrier with tunable swelling, mechanical, and biodegradation properties.


Assuntos
Adesivos , Cartilagem , Animais , Caproatos , Dioxanos , Estudos de Viabilidade , Lactonas , Reprodutibilidade dos Testes
13.
Tissue Eng Regen Med ; 17(5): 625-640, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32617955

RESUMO

BACKGROUND: The extracellular matrix (ECM) of articular cartilage has an inhibitory effect on vascularization, yet clinical utilization has been technically challenging. In this study, we aimed to fabricate a biologically functional ECM powder suspension from porcine articular cartilage that inhibits neovascularization (NV). METHODS: The digested-cartilage acellular matrix (dg-CAM) was prepared by sequential processes of decellularization, enzymatic digestion and pulverization. Physicochemical properties of dg-CAM were compared with that of native cartilage tissue (NCT). Cellular interactions between human umbilical vein endothelial cells (HUVECs) and dg-CAM was evaluated with proliferation, migration and tube formation assays compared with that of type I collagen (COL) and bevacizumab, an anti-angiogenic drug. We then investigated the therapeutic potential of topical administration of dg-CAM suspension on the experimentally induced rabbit corneal NV model. RESULTS: The dg-CAM released a significantly larger amount of soluble proteins than that of the NCT and showed an improved hydrophilic and dispersion properties. In contrast, the dg-CAM contained a large amount of collagen, glycosaminoglycans and anti-angiogenic molecules as much as the NCT. The inhibitory effect on NV of the dg-CAM was more prominent than that of COL and even comparable to that of bevacizumab in inhibiting the HUVECs. The therapeutic potential of the dg-CAM was comparable to that of bevacizumab in the rabbit corneal NV model by efficiently inhibiting neovessel formation of the injured cornea. CONCLUSION: The current study developed a dg-CAM having anti-angiogenic properties, together with water-dispersible properties suitable for topical or minimally invasive application for prevention of vessel invasion.


Assuntos
Cartilagem Articular , Neovascularização da Córnea , Administração Tópica , Animais , Córnea , Neovascularização da Córnea/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Humanos , Coelhos , Suínos
14.
Artif Organs ; 44(4): E136-E149, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31660625

RESUMO

Cartilage extracellular matrix contains antiadhesive and antiangiogenic molecules such as chondromodulin-1, thrombospondin-1, and endostatin. We have aimed to develop a cross-linked cartilage acellular matrix (CAM) barrier for peritendinous adhesion prevention. CAM film was fabricated using decellularized porcine cartilage tissue powder and chemical cross-linking. Biochemical analysis of the film showed retention of collagen and glycosaminoglycans after the fabrication process. Physical characterization of the film showed denser collagen microstructure, increased water contact angle, and higher tensile strength after cross-linking. The degradation time in vivo was 14 d after cross-linking. The film extract and film surface showed similar cell proliferation, while inhibiting cell migration and cell adhesion compared to standard media and culture plate, respectively. Application of the film after repair resulted in similar tendon healing and significantly less peritendinous adhesions in a rabbit Achilles tendon injury model compared to repair only group, demonstrated by histology, ultrasonography, and biomechanical testing. In conclusion, the current study developed a CAM film having biological properties of antiadhesion, together with biomechanical properties and degradation profile suitable for prevention of peritendinous adhesions.


Assuntos
Matriz Extracelular/transplante , Traumatismos dos Tendões/cirurgia , Aderências Teciduais/prevenção & controle , Animais , Reagentes de Ligações Cruzadas , Matriz Extracelular/ultraestrutura , Glutaral , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Coelhos , Suínos , Tecidos Suporte
15.
Polymers (Basel) ; 11(2)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30960232

RESUMO

In this paper, a cartilage acellular-matrix (CAM) is chosen as a biomaterial for an effective antiadhesive barrier to apply between injured tissue and healthy tissues or organs. CAM is cross-linked using glutaraldehyde to create a cross-linked CAM (Cx-CAM) film. Cx-CAM has higher elastic modulus and toughness and more hydrophobic surface properties than CAM before cross-linking. Small intestinal submucosa (SIS), cross-linked SIS (Cx-SIS) as a negative control, and Seprafilm as a positive control are used in an experiment as adhesion barriers. Human umbilical vein endothelial cells (HUVECs) on SIS, Cx-SIS, or in a culture plate get attached and effectively proliferate for 7 days, but Cx-CAM and Seprafilm allow for little or no attachment and proliferation of HUVECs, thus manifesting antiadhesive and antiproliferative effects. In animals with surgical damage to the peritoneal wall and cecum, Cx-CAM and Seprafilm afford little adhesion and negligible inflammation after seven days, as confirmed by hematoxylin and eosin staining and macrophage staining, in contrast to an untreated-injury model, SIS, or Cx-SIS film. Cx-CAM significantly suppresses the formation of blood vessels between the peritoneal wall and cecum, as confirmed by CD31 staining. Overall, the newly designed Cx-CAM film works well as an antiadhesion barrier and has better anti-tissue adhesion efficiency.

16.
Acta Biomater ; 74: 192-206, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793074

RESUMO

In this work, we chose cartilage acellular matrix (CAM) as a promising antiadhesive material because CAM effectively inhibits the formation of blood vessels, and we used electrospinning to prepare antiadhesive barriers. Additionally, we synthesized N-hydroxysuccinimide (NHS)-poly(caprolactone-co-lactide-co-glycolide)-NHS (MP) copolymers (to tune degradation) as a cross-linking agent for CAM. This is the first report on the development of electrospun cross-linked (Cx) CAM/MP (CA/P) nanofiber (NF) (Cx-CA/P-NF) with a tunable degradation period as an antiadhesive barrier. Compared with the CA/P-NF before cross-linking, the electrospun Cx-CA/P-NF after cross-linking showed different biodegradation. Cx-CA/P-NF significantly inhibited the in vitro attachment and proliferation of human umbilical vein endothelial cells (HUVECs), as confirmed by an MTT assay and scanning electron microscopy images. Cx-CA/P-NFs implanted between a surgically damaged peritoneal wall and cecum gradually degraded in 7 days; this process was monitored by NIR imaging. The in vivo evaluation of the anti-tissue adhesive effect of Cx-CA/P-NFs revealed little adhesion, few blood vessels, and negligible inflammation at 7 days determined by hematoxylin and eosin staining. ED1 staining of Cx-CA/P-NFs showed infiltration of few macrophages because of the inflammatory response to the Cx-CA/P-NF as compared with an untreated injury model. Additionally, Cx-CA/P-NFs significantly suppressed the formation of blood vessels between the peritoneal wall and cecum, according to CD31 staining. Overall, Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Thus, it is reasonable to conclude that the Cx-CA/P-NF designed herein successfully works as an antiadhesive barrier with a tunable degradation period. STATEMENT OF SIGNIFICANCE: The cartilage acellular matrix (CAM) can inhibit the formation of fibrous tissue bridges and blood vessels between the tissue at an injured site and the surrounding healthy tissues. However, CAM has not been rigorously investigated as an antiadhesive barrier. In this manuscript, the cross-linked CAM nanofiber (Cx-CA/P-NF) designed herein successfully works as an antiadhesive barrier. Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Moreover, we demonstrated the suitable properties of Cx-CA/P-NF such as easy cross-linking by maintaining the antiadhesive properties, controllable biodegradation, and in vivo antiadhesive effect of Cx-CA/P-NF.


Assuntos
Matriz Extracelular/química , Nanofibras , Poliésteres , Aderências Teciduais/prevenção & controle , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanofibras/química , Nanofibras/uso terapêutico , Poliésteres/química , Poliésteres/farmacologia , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia
17.
Tissue Eng Regen Med ; 15(4): 427-436, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30603566

RESUMO

BACKGROUND: Mass production of exosomes is a prerequisite for their commercial utilization. This study investigated whether three-dimensional (3D) spheroid culture of mesenchymal stem cells (MSCs) could improve the production efficiency of exosomes and if so, what was the mechanism involved. METHODS: We adopted two models of 3D spheroid culture using the hanging-drop (3D-HD) and poly(2-hydroxyethyl methacrylate) (poly-HEMA) coating methods (3D-PH). The efficiency of exosome production from MSCs in the 3D spheroids was compared with that of monolayer culture in various conditions. We then investigated the mechanism of the 3D spheroid culture-induced increase in exosome production. RESULTS: The 3D-HD formed a single larger spheroid, while the 3D-PH formed multiple smaller ones. However, MSCs cultured on both types of spheroids produced significantly more exosomes than those cultured in conventional monolayer culture (2D). We then investigated the cause of the increased exosome production in terms of hypoxia within the 3D spheroids, high cell density, and non-adherent cell morphology. With increasing spheroid size, the efficiency of exosome production was the largest with the least amount of cells in both 3D-HD and 3D-PH. An increase in cell density in 2D culture (2D-H) was less efficient in exosome production than the conventional, lower cell density, 2D culture. Finally, when cells were plated at normal density on the poly-HEMA coated spheroids (3D-N-PH); they formed small aggregates of less than 10 cells and still produced more exosomes than those in the 2D culture when plated at the same density. We also found that the expression of F-actin was markedly reduced in the 3D-N-PH culture. CONCLUSION: These results suggested that 3D spheroid culture produces more exosomes than 2D culture and the non-adherent round cell morphology itself might be a causative factor. The result of the present study could provide useful information to develop an optimal process for the mass production of exosomes.

18.
Materials (Basel) ; 9(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28787849

RESUMO

In this study, we examined whether porcine articular cartilage (PAC) is a suitable and effective anti-adhesive material. PAC, which contained no non-collagenous tissue components, was collected by mechanical manipulation and decellularization of porcine knee cartilage. The PAC film for use as an anti-adhesive barrier was easily shaped into various sizes using homemade silicone molds. The PAC film was cross-linked to study the usefulness of the anti-adhesive barrier shape. The cross-linked PAC (Cx-PAC) film showed more stable physical properties over extended periods compared to uncross-linked PAC (UnCx-PAC) film. To control the mechanical properties, Cx-PAC film was thermally treated at 45 °C or 65 °C followed by incubation at room temperature. The Cx-PAC films exhibited varying enthalpies, ultimate tensile strength values, and contact angles before and after thermal treatment and after incubation at room temperature. Next, to examine the anti-adhesive properties, human umbilical vein endothelial cells (HUVECs) were cultured on Cx-PAC and thermal-treated Cx-PAC films. Scanning electron microscopy, fluorescence, and MTT assays showed that HUVECs were well adhered to the surface of the plate and proliferated, indicating no inhibition of the attachment and proliferation of HUVECs. In contrast, Cx-PAC and thermal-treated Cx-PAC exhibited little and/or no cell attachment and proliferation because of the inhibition effect on HUVECs. In conclusion, we successfully developed a Cx-PAC film with controllable mechanical properties that can be used as an anti-adhesive barrier.

19.
J Biomater Sci Polym Ed ; 27(2): 177-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26679994

RESUMO

We present a non-invasive fluorescence method for imaging of scaffold degradation in vivo by quantifying the degradation of porcine cartilage-derived extracellular matrix powder (PCP).Three-dimensional porous scaffolds should be biocompatible and bioresorbable, with a controllable degradation and resorption rate to match tissue growth. However, in vivo scaffold degradation and tissue ingrowth processes are not yet fully understood. Unfortunately, current analysis methods require animal sacrifice and scaffold destruction for the quantification of scaffold degradation and cannot monitor the situation in real time. In this study, Cy3, a fluorescent dye, was used for visualizing PCP and a real-time degradation profile was obtained quantitatively by a non-invasive method using an imaging system in which the reduction in fluorescence intensity depended on PCP scaffold degradation. Real-time PCP scaffold degradation was confirmed through changes in the volume and morphology of the scaffold using micro-computed tomography and microscopy. Our results suggest that extracellular matrix degradation was induced by collagen degradation because of the binding between Cy3 and collagen. This non-invasive real-time monitoring system for scaffold degradation will increase our understanding of in vivo matrix and/or scaffold degradation.


Assuntos
Cartilagem/citologia , Matriz Extracelular/metabolismo , Imagem Óptica , Tecidos Suporte , Animais , Carbocianinas/química , Ésteres , Matriz Extracelular/química , Camundongos , Pós , Suínos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...